EXAMPLE 6 - DECK DESIGN INCLUDING TYPE 10 MASH RAIL COLLISION EXAMPLE 6.1 - DECK DESIGN

GENERAL INFORMATION

Based on AASHTO LRFD Bridge Design Specifications 9.6.1, there are 3 methods of deck analysis:

1. Approximate Elastic Method, or "Equivalent Strip" Method (AASHTO 4.6.2.1)
2. Refined Methods (AASHTO 4.6.3.2)
3. Empirical Design Method (AASHTO 9.7.2)

This design example uses the Approximate Elastic Method (Equivalent Strip Method), in which the deck is divided into transverse strips, assumed to be supported on rigid supports at the center of the girders.

IYPICAL SECTION

MATERIAL AND SECTION PROPERTIES

Structure Type
Girder Spacing, maximum
Number of girders
Overall Deck width
Deck slab thickness
Overhang thickness (average)
Concrete top cover
Concrete bottom cover
Wearing surface
Concrete strength
Reinforcement strength
Concrete density
Deck overlay density
Allowance for future utilities
Resistance factors

Correction factor for source aggregate
Modulus of elasticity of reinforcement
Modulus of elasticity of concrete
$E_{c}=120,000 K_{1} W_{c}^{2} f_{c}^{\prime 0.33}$
Modular ratio
Girder Type
Girder web thickness
Girder top flange width

	CIP Concrete	Deck
$\mathrm{S}_{\mathrm{Gdr}}=$	11.0	ft
$\mathrm{N}_{\mathrm{Gdr}}=$	$\mathbf{4}$	ea
$\mathrm{W}_{\text {deck }}=$	43.0	ft
$\mathrm{t}_{\text {deck }}=$	8	in
$\mathrm{t}_{\mathrm{OH}}=$	$\mathbf{9 . 6 7}$	in
$\mathrm{C}_{\text {Top }}=$	2.0	in
$\mathrm{C}_{\text {Bot }}=$	$\mathbf{1 . 0}$	in
$\mathrm{t}_{\text {Ws }}=$	$\mathbf{3 . 0}$	in

$\mathrm{f}_{\mathrm{c}}=$	4.5	ksi	
$\mathrm{f}_{\mathrm{y}}=$	60.0	ksi (Minimum yield strength of grade 60 steel)	
$\mathrm{W}_{\mathrm{c}}=$	0.150	kcf	
$\mathrm{W}_{\mathrm{ws}}=$	0.147	kcf	BDM 3.4.2
$\mathrm{W}_{\text {util }}=$	0.005	ksf	BDM 3.4.3
$\varphi_{\text {STR }}=$	0.9	(strength limit state)	
$\varphi_{\text {EE }}=$	1.0	(extreme event limit state)	
$\mathrm{K}_{1}=$	1		
$\mathrm{E}_{\mathrm{s}}=$	29000.0	ksi	AASHTO 5.4.3.2
$\mathrm{E}_{\mathrm{c}}=$	4435.3	ksi	AASHTO 5.4.2.4
$\mathrm{n}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{c}}=$	6.54		
	Box Girder		
web=	4.0	in	
flange=	48.0	in	

Barrier Type	Type 10MASH		
CY of concrete for barrier section	$\mathrm{A}_{\mathrm{B}}=$	0.059	CY/ft
Barrier Weight	$\mathrm{W}_{\text {barrier }}=$	0.289	kip/ft

(Refer to CDOT bridge Worksheet B-606-10MASH for more details)

UNFACTORED DEAD LOADS

Based on Table 3-22c, Continuous Beams Moment and Shear Coefficients - Equal Spans, Equally Loaded, in terms of wl2, +M $=0.080$ and $-\mathrm{M}=0.100$ and will be used for this design

+Moment in terms of wl^{2}	$\mathbf{0 . 0 8}$
-Moment in terms of wl^{2}	$\mathbf{0 . 1 0}$

$\mathrm{W}_{\text {deck }}=$	8.00 in $/ 12$ * $0.15 \mathrm{kcf}=$	0.1 klf
$\mathrm{W}_{\mathrm{WS}}=$	3.00 in $/ 12$ * $0.147 \mathrm{kcf}=$	0.037 klf

Positive Moment

$+\mathrm{M}_{\text {deck }}=$	$0.100 \mathrm{klf} *(11.00 \mathrm{ft})^{\wedge} 2 * 0.08=$	$0.968 \mathrm{k}-\mathrm{ft} / \mathrm{ft}$
$+\mathrm{M}_{\mathrm{Ws}}=$	$0.037 \mathrm{klf} *(11.00 \mathrm{ft})^{\wedge} 2 * 0.08=$	$0.355 \mathrm{k}-\mathrm{ft} / \mathrm{ft}$

Negative Moment

$-\mathrm{M}_{\text {deck }}=$	$0.100 \mathrm{klf} *(11.00 \mathrm{ft})^{\wedge} 2^{*} 0.10=$	$1.21 \mathrm{k}-\mathrm{ft} / \mathrm{ft}$
$-\mathrm{M}_{\mathrm{wS}}=$	$0.037 \mathrm{klf}{ }^{*}(11.00 \mathrm{ft})^{\wedge} \mathrm{L}^{*} 0.10=$	$0.444 \mathrm{k}-\mathrm{ft} / \mathrm{ft}$

UNFACTORED LIVE LOADS

Live load moment can be determined by using AASHTO LRFD Bridge Design Specifications Appendix A4 T.A4-1. This table lists positive and negative moments per unit width of the deck with various girder spacings and various distances from the design section to the centerline of girders. This table is based on the equivalent strip method and interpolation is allowed when needed.

FACTORED DESIGN LOADS

Concrete decks must be investigated for strength, service and extreme limit states. Fatigue and fracture limit states do not need to be investigated (AASHTO 9.5).
$M_{u}=\eta\left[Y_{D C} M_{D C}+Y_{D W} M_{D W}+m Y_{L L}\left(M_{L L}+I M\right)\right]$
$\eta=1.0 \quad$ load modifier
y - load factors specified in AASHTO T.3.4.1-1, T.3.4.1-2
m - multiple presence factor, included in values from AASHTO T. A4-1
IM - dynamic load allowance, included in values from AASHTO T. A4-1

Load Combination	Load Factors			Design Moments	
	Y $_{\text {DC_max }}$	YDW_max	Y_{LL}	$+\mathrm{M}_{\mathrm{LL}}$	$-\mathrm{M}_{\mathrm{LL}}$
Strength I	1.25	1.5	1.75	14.80	-10.09
Service I	1	1	1	8.78	-6.17

Note - it is conservative to use minimum load factors for positive values of M_{100} and M_{200} and negative values of M_{150}.

Controlling positive factored moment	$+\mathrm{Mu}=$	$14.80 \mathrm{kip}-\mathrm{ft} / \mathrm{ft}$
Controlling negative factored moment	$-\mathrm{Mu}=$	$-10.09 \mathrm{kip}-\mathrm{ft} / \mathrm{ft}$

DECK SLAB STRENGTH DESIGN

Design of deck reinforcement, including flexural resistance, limits of reinforcement, and control of cracking is based on AASHTO LRFD Bridge Design Specifications 5.7.3 (typical rectangular beam design). The following design method can be used for normal weight concrete with specified compressive strengths up to 15.0 ksi. Refer to Section 9, Deck and Deck Systems, of this BDM for information about acceptable deck reinforcement sizes and spacing.

Width of the design section	$\mathrm{b}=$	$\mathbf{1 2 . 0}$	in.
Resistance factor for tension-controlled section	$\varphi_{\text {STR }}=$	0.9	

AASHTO 5.5.4.2
Positive Moment Capacity (bottom reinforcement)

Try	Bar size	$\#$	5	
	Bar spacing	$\mathrm{s}=$	$\mathbf{6 . 0}$	in.
Bar diameter	$\mathrm{d}_{\mathrm{b}}=$	0.625	in.	
Bar area	$\mathrm{A}_{\mathrm{b}}=$	0.31	in. 2	

Area of steel per design strip

$$
A_{S}=b\left(A_{b} / s\right)=\quad 12.0 \mathrm{in.}^{*} 0.310 \mathrm{in.}^{2} / 6.0 \mathrm{in} .=\quad 0.62 \mathrm{in.}^{2}
$$

Effective depth of section

$$
d_{S}=t_{\text {Deck }}-c_{\text {Bot }}-1 / 2 d_{b}=\quad 8.0 \mathrm{in} .-1.0 \mathrm{in} .-0.625 \mathrm{in} . / 2=6.69 \mathrm{in} .
$$

Depth of equivalent stress block

$$
a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b}=
$$

$$
0.62 \mathrm{in}^{2} \text { * } 60.0 \mathrm{ksi} /(0.85 * 4.5 \mathrm{ksi} * 12 \mathrm{in} .)=
$$

0.81 in.

Factored flexural resistance $+\varphi M_{n}=\varphi A_{S} f_{y}\left(d_{S}-\frac{a}{2}\right)=$

$$
\begin{array}{lrll}
=0.90 * 0.62 \text { in. }^{2}{ }^{*} 60.0 \mathrm{ksi}^{*}(6.69 \mathrm{in} .-0.81 \mathrm{in} . / 2) / 12 \mathrm{in} . / \mathrm{ft} . & \\
& 17.53 \mathrm{kip}-\mathrm{ft} .
\end{array}
$$

Negative Moment Capacity (top reinforcement)

Try	Bar size	\#	$\mathbf{5}$	
	Bar spacing	$\mathrm{s}=$	$\mathbf{5 . 0}$	in.
Bar Diameter	$\mathrm{d}_{\mathrm{b}}=$	0.625	in.	
Bar Area	$\mathrm{A}_{\mathrm{b}}=$	0.31	$\mathrm{in.}^{2}$	

Area of steel per 1.00 ft . design strip

$$
A_{S}=B\left(A_{b} / s\right)=
$$

12 in. * 0.310 in. ${ }^{2} 5.00$ in. $=$
0.74 in. ${ }^{2}$

Effective depth of section

$$
d_{S}=t_{\text {Deck }}-c_{\text {Top }}-1 / 2 d_{b}=
$$

$$
8.0 \text { in. }-2.0 \text { in. }-0.625 \text { in. } / 2=
$$

5.69 in.

Depth of equivalent stress block

$$
a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b}=\quad 0.74 \mathrm{in}^{2} * 60.0 \mathrm{ksi} /(0.85 * 4.5 \mathrm{ksi} * 12 \mathrm{in} .)=\quad 0.97 \mathrm{in} .
$$

Factored flexural resistance $\quad-\varphi M_{n}=\varphi A_{s} f_{y}\left(d_{s}-\frac{a}{2}\right)=$

$$
\begin{array}{llll}
=0.90 * 0.74 \mathrm{in}^{2}{ }^{2} 60.0 \mathrm{ksi}^{*}(5.69 \mathrm{in} .-0.97 \mathrm{in} . / 2) / 12 \mathrm{in} . / \mathrm{ft} . & \\
\text { Check }-\varphi M_{n}>-M_{u}: & 17.41 \mathrm{kip} \mathrm{ft} .
\end{array}
$$

Minimum Reinforcement

AASHTO 5.6.3.3
Unless otherwise specified, the amount of prestressed and non-prestressed tensile reinforcement shall be adequate to develop a factored flexural resistance, $\mathrm{Mr}=\varphi \mathrm{Mn}$, at least equal to the lesser of:

- 1.33 times the positive factored ultimate moment
- Cracking moment

Cracking moment

$$
M_{c r}=\gamma_{3}\left[\left(\gamma_{1} f_{r}+\gamma_{2} f_{c p e}\right) S_{c}-M_{d n c}\left(\frac{S_{c}}{S_{n c}}-1\right)\right]
$$

AASHTO 5.6.3.3-1

When simplified by removing all values applicable to prestressed and noncomposite sections, this equation becomes the
following: $\quad M_{c r}=\gamma_{3} \gamma_{1} f_{r} S_{c}$

AASHTO 5.6.3.3
Flexural cracking variability factor
Ratio of specified min. yield strength to ultimate tensile strength
Concrete density modification factor

$\gamma_{1}=$	1.6	(non-segmen
$\gamma_{3}=$	0.67	(A615 steel)
$\lambda=$	1.0	

Modulus of rupture $\quad f_{r}=0.24 \lambda \sqrt{f_{c}^{\prime}}=$
0.509 ksi

AASHTO 5.4.2.6
AASHTO 5.4.2.6

Section modulus of design section

$$
S_{c}=\frac{b h^{2}}{6}=\frac{b t_{\text {Deck }}^{2}}{6}=12.0 \mathrm{in} . *(8.0 \mathrm{in.})^{2} / 6=
$$

$$
128 \text { in. }^{3}
$$

Check Positive Moment reinforcement

$$
\text { Check }+\varphi M_{n} \geq \min \left\{\begin{array}{l}
1.33\left(+\mathrm{M}_{\mathrm{u}}\right)= \\
\mathrm{M}_{\mathrm{cr}}= \\
0.67 * 1.60 * 0.51 \mathrm{ksi} * 128.0 \mathrm{in} .3 / 12 \mathrm{in} . / \mathrm{ft} .= \\
17.53>5.82
\end{array} \quad\right. \text { OK }
$$

Check Negative Moment reinforcement

CONTROL OF CRACKING AT SERVICE LIMIT STATE

Cracking is controlled by the spacing of mild steel reinforcement in the layer closest to the tension face, which shall satisfy the following (need not be less than 5.00 in .):

$$
s \leq \frac{700 \gamma_{e}}{\beta_{s} f_{s s}}-2 d_{c}
$$

AASHTO 5.6.7-1

In which:	$\mathrm{V}_{\mathrm{e}}=$	1.00	- exposure factor (1.0 for Class 1 and 0.75 for Class 2) (assume waterproofing membrane is used)
	b_{s} -	ratio of flax layer nea	ural strain at the extreme tension face to the strain at the centroid of the reinforcement st the tension face
	$\mathrm{f}_{\text {ss }}$ -	calculate	nsile stress in mild steel reinforcement at the service limit state ($\leq 0.60 \mathrm{f}_{\mathrm{y}} \mathrm{ksi}$)
	d_{c} -	thicknes reinforce in. plus th	concrete cover measured from extreme tension fiber to center of the flexural nt located closest thereto. For calculation purposes, d_{c} need not be taken greater than 2 bar radius

Check Cracking at the Bottom of Deck (spacing of Positive Moment reinforcement):

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{c}}=\mathrm{c}_{\text {Bот }}+1 / 2 \mathrm{~d}_{\mathrm{b}}=\quad 1.00 \mathrm{in} .+0.625 \mathrm{in} . / 2=1.31 \mathrm{in} . \\
& \beta_{S}=1+\frac{d_{C}}{0.7\left(t_{\text {Deck }}-d_{C}\right)}=\quad 1+1.31 \mathrm{in.} /[0.7(8.0 \mathrm{in} .-1.31 \mathrm{in} .)]=\quad 1.28 \\
& \text { Tension reinforcement ratio } \quad \rho=\frac{A_{S}}{b d_{S}}=0.62 \mathrm{in} . /(12 \mathrm{in} . ~ * 6.69 \mathrm{in} .)=\quad 0.008 \\
& k=\sqrt{2 n \rho+(n \rho)^{2}}-n \rho=\quad 0.271 \\
& j=1-k / 3=\quad 0.910 \\
& f_{s S}=\frac{+M_{u_{\text {_service }}}}{A_{S} j d_{S}}=\quad 8.78 \mathrm{kip-ft.} * 12 \mathrm{in} . / \mathrm{ft} . /\left(0.62 \mathrm{in} .{ }^{2} 0.91 * 6.69 \mathrm{in} .\right)=\quad 27.95 \mathrm{ksi} \\
& s_{\max }=\frac{700 \gamma_{e}}{\beta_{S} f_{S S}}-2 d_{C}=700 * 1.00 /(1.28 * 27.95 \mathrm{ksi})-2 * 1.31 \mathrm{in} .=\quad 16.94 \mathrm{in} . \\
& \text { Spacing of positive moment reinforcement used in the design }=\quad 6.00 \text { in. } \\
& \text { Check spacing used } \leq s_{\max } \text { : } 6.00<16.94 \text { OK }
\end{aligned}
$$

Check Cracking at Top of Deck (spacing of Negative Moment reinforcement):

$$
\begin{array}{ll}
\mathrm{d}_{\mathrm{c}}=\mathrm{c}_{\text {Top }}+1 / 2 \mathrm{~d}_{\mathrm{b}}= & 2.0 \mathrm{in} .+0.625 \mathrm{in} . / 2= \\
\beta_{S}=1+\frac{d_{C}}{0.7\left(t_{\text {Deck }}-d_{C}\right)}= & 1+2.31 \mathrm{in} . /[0.7 *(8.0 \mathrm{in} .-2.31 \mathrm{in} .)]= \\
\text { Tension reinforcement ratio } & \rho=\frac{A_{S}}{b d_{S}}=0.74 \mathrm{in} . /\left(12 \mathrm{in}^{2}{ }^{2} 5.69 \mathrm{in} .\right)= \\
\text { Modular ratio } \quad \mathrm{n}=\mathrm{E}_{\mathrm{S}} / \mathrm{E}_{\mathrm{C}}= & 29000 \mathrm{ksi} / 4435 \mathrm{ksi}=
\end{array}
$$

$$
\begin{array}{ll}
k=\sqrt{2 n \rho+(n \rho)^{2}}-n \rho= & 0.313 \\
j=1-k / 3= & 0.896
\end{array}
$$

$$
f_{s S}=\frac{-M_{u_{_} \text {service }}}{A_{S} j d_{S}}=6.17 \mathrm{kip-ft.} * 12 \mathrm{in} . / \mathrm{ft} . /\left(0.74 \mathrm{in} .^{2} 0.90 * 5.69 \mathrm{in} .\right)=\quad 19.55 \mathrm{ksi}
$$

$$
s_{\max }=\frac{700 \gamma_{e}}{\beta_{S} f_{S S}}-2 d_{C}=700 * 1.00 /(1.58 * 19.55 \mathrm{ksi})-2 * 2.31 \mathrm{in} .=\quad 18.03 \mathrm{in}
$$

Spacing of negative moment reinforcement used in the design $=$
5.00 in.
Check spacing used $\leq s_{\text {max }}: \quad 5.00<18.03$ OK

Check tensile stress at service limit state doesn't exceed 0.60fy

$$
\begin{array}{rr}
\mathrm{fss}= & 19.55 \mathrm{ksi} \\
0.60 \mathrm{fy}= & 36 \mathrm{ksi}=0.60 * 60 \mathrm{ksi} \\
& \\
& \text { Check } f_{s s} \leq 0.60 f_{y}
\end{array}
$$

LONGITUDINAL REINFORCEMENT

Minimum reinforcement is required in all directions to accommodate shrinkage and temperature changes near the surface of the slab. Longitudinal reinforcement on each face shall meet the following:

$A_{S} \geq \frac{1.3 b t_{\text {Deck }}}{2\left(b+t_{\text {Deck }}\right) f_{y}}$	AASHTO 5.10.6-1
$0.11 \leq A_{S} \leq 0.60$	$0.052 \mathrm{in}^{2} / \mathrm{ft}$.
$\mathrm{A}_{\mathrm{s}, \text { min }}=$	$1.3^{*} 12.0 \mathrm{in} .{ }^{*} 8.0 \mathrm{in} . /[2(12.0 \mathrm{in} .+8.0 \mathrm{in}) 60.0 \mathrm{ksi}]=$.
$\mathrm{A}_{\mathrm{s}, \text { min }}=$	$0.11 \mathrm{in}^{2} / \mathrm{ft}$.

Per Section 9.6 of the CDOT BDM, the minimum longitudinal reinforcing steel in the top of the concrete bridge deck shall be \#4 @ 6.00 in. Longitudinal reinforcement in the bottom of the deck slab can be distributed as a percentage of the primary reinforcement for positive moment.

EXAMPLE 6.2 - TYPE 10 MASH STRENGTH DESIGN

GENERAL INFORMATION

CDOT Bridge Rail Type 10MASH consists of a concrete parapet and a metal rail. The resistance to transverse vehicular impact loads shall be determined as specified in AASHTO LRFD Bridge Design Specifications A13.3.3. End impact is not considered. See CDOT Worksheet B-606-10MASH for barrier details.
The TL-4 maximum capacity of Type 10 MASH is shown for overhang example.

Overall barrier height
Concrete cover (For SS rebars)
Resistance factors

Test level
Transverse design force
Impact force distribution
CONCRETE PARAPET
Height
Width at base
Concrete Compressive Strength
Reinforcing Steel
RAIL POST
Type
Steel grade
Post spacing
Effective height
Area of post
Web depth
Web thickness
Flange thickness
Flange width
Depth of W beam
Mn=Mp=FyZ (F7-1 AISC Manual)

RAIL TUBES

$\mathrm{H}_{\mathrm{w}}=$	13.4375	in.
$\mathrm{d}=$	18.0	in.
$\mathrm{f}^{\prime} \mathrm{C}=$	4.5	ksi
$\mathrm{fy}=$	75.0	ksi

$\mathrm{H}_{\mathrm{B}}=$	$\mathbf{4 3 . 0}$	in.	
$\mathrm{c}=$	$\mathbf{1 . 5}$	in.	
φ_{EE}	$=$	$\mathbf{1}$	(Extreme Event)
φ_{S}	$=$	$\mathbf{0 . 8}$	(A325 bolts in shear)
φ_{T}	$=$	$\mathbf{0 . 8}$	(A325 bolts in tension)
MASH	$\mathrm{TL}-4$		
$\mathrm{~F}_{\mathrm{t}}$	$=$	$\mathbf{8 0 . 0}$	kips
L_{t}	$=$	$\mathbf{5 . 0}$	ft.

AASHTO 1.3.2.1
AASHTO 6.5.4.2
AASHTO 6.5.4.2
AASHTO T.A13.2-1
See table below
See table below

d_{b}	$=$	6.2	
$\mathrm{Fy}($ post $)$	$=$	50	ksi
Zx - $($ post $)$	$=$	14.9	$\mathrm{in.}^{3}$
$\mathrm{M}_{\text {post }}$	$=$	62.08	$\mathrm{kip}-\mathrm{ft}$

Fy (post) $=50 \mathrm{ksi} \quad$ AISC Table 1-1

Type
Steel grade
Area of one tube
Number of tubes
$M_{n}=M_{p}=F_{y} Z$ (F7-1 AISC Manual)

BASE PLATE

Width of base plate
Thickness of base plate
Distance to bolts
Bolt diameter
Min tensile strength
Number of bolts ASTM A-572, Grade 50

L	$=$	10
ft.	(max)	
H_{R}	$=$	32.5

$A_{\text {Post }}=5.87$ in. ${ }^{2}$
$\mathrm{D}=5.47$ in.
$\mathrm{t}_{\mathrm{w}}=0.26 \mathrm{in}$.
$\mathrm{t}_{\mathrm{F}}=0.37 \mathrm{in}$.
$\mathrm{b}_{\mathrm{f}}=\quad 6.02$
$d_{b}=6.2$
62.08 kip-ft

AISC Table 1

Number tubes

Number of bols

HSS $6 \times 6 \times 1 / 4$ ASTM A-1085		
$\mathrm{A}_{\text {Tube }}=$	5.59	in. ${ }^{2}$
nTubes $=$	2	ea.
Fy (tube) $=$	50.0	ksi
Z (tube) =	11.2	in. ${ }^{3}$
$\mathrm{M}_{\mathrm{p}}=$	93.33	kip-ft

$\mathrm{W}_{\mathrm{b}}=$	$\mathbf{1 2 . 0}$	in.
$\mathrm{t}_{\mathrm{b}}=$	$\mathbf{0 . 6 8 7 5}$	in.
$\mathrm{~d}_{\mathrm{bo}}$	$=$	10.0
in.		
\varnothing	$=$	0.875
in.		
$\mathrm{F}_{\mathrm{ub}}=$	$\mathbf{1 2 0 . 0}$	ksi
$\mathrm{n}_{\mathrm{b}}=$	2	

AISC Table 1-12
AISC Table 1-12

Design Forces for Traffic Railings

Test Level	Rail Height (in.)	Ft (kip)	Fl (kip)	Fv (kip)	$\mathbf{L t} / \mathbf{L L}$ (ft)	Lve (ft)	H_{e} (in)	Hinin (in)
TL-1	18 or above	13.5	4.5	4.5	4.0	18.0	18.0	18.0
TL-2	18 or above	27.0	9.0	4.5	4.0	18.0	20.0	18.0
TL-3	29 or above	71.0	18.0	4.5	4.0	18.0	19.0	29.0
TL-4 (a)	36	68.0	22.0	38.0	4.0	18.0	25.0	36.0
TL-4 (b)	between 36 and 42	80.0	27.0	22.0	5.0	18.0	30.0	36.0
TL-5 (a)	42	160.0	41.0	80.0	10.0	40.0	35.0	42.0
TL-5 (b)	greater than 42	262.0	75.0	160.0	10.0	40.0	43.0	42.0
TL 6		175.0	58.0	80.0	8.0	40.0	56.0	90.0

References:

- TL-1 and TL-2 Design Forces are from AASHTO LRFD Section 13 Table A13.2-1
- TL-3 Design Forces are from research conducted under NCHRP Project 20-07 Task 395
- TL-4 (a), TL-4 (b), TL-5 (a), and TL-5 (b) Design Forces are from research conducted under NCHRP Project 22-20(2)

CONCRETE PARAPET CAPACITY

1. Determine M_{w} : flexural resistance of the parapet about its vertical axis. Positive and negative moment strength must be evaluated but will be equal based on barrier longitudinal reinforcement.

Back face horizontal reinforcement

$$
\begin{array}{rcl}
\text { Size }= & \# 4 & \text { Bar Diameter }= \\
\text { Number of bars }=\quad \mathbf{2} & \text { Bar Area }= \\
& \begin{array}{l}
\text { Stirrup Dia. }= \\
\\
\text { Design strip, } b=
\end{array}
\end{array}
$$

Area of steel per design strip
Effective depth of section $\mathrm{A}_{\mathrm{S}}=$ Bar Area *NO. of bars $=$ $d_{\text {S }}=d-c-$ Stirrup Dia. - 1/2 Bar Dia. $=$
0.5 in.
0.2 in ${ }^{2}$
0.5 in.
13.0 in.
$0.4 \quad$ in. ${ }^{2} / \mathrm{ft}$.
15.75 in.

Depth of equivalent stress block

$$
a=\frac{A_{S} f_{y}}{0.85 f_{c}^{\prime} b}=\quad 0.40 \mathrm{in} . * 75.0 \mathrm{ksi} /(0.85 * 4.50 \mathrm{ksi} * 13.0 \mathrm{in} .)=\quad 0.603 \mathrm{in} .
$$

Flexural resistance

$$
\begin{aligned}
& \quad M_{W}=\varphi_{E E} A_{S} f_{y}\left(d_{S}-\frac{a}{2}\right)= \\
& 1.0 * 0.40 \mathrm{in.} \text { * } 75.0 \mathrm{ksi} *(15.75 \mathrm{in} .-0.60 \mathrm{in} . / 2) / 12 \mathrm{in} . / \mathrm{ft} .= \\
& 38.62 \mathrm{kip}-\mathrm{ft} .
\end{aligned}
$$

2. Determine M_{C} : flexural resistance of cantilevered parapet about an axis parallel to the longitudinal axis of the bridge. Flexural moment resistance is based on the vertical reinforcement in the barrier.

Stirrup Size =	\# 4		Bar Diameter =	0.5
Stirrup spacing =	10.00 in.	Avg	Bar Area =	0.16351
ht bar development length is			Bar Area =	0.2

$I d b=\quad 23.00 \mathrm{in}$.

For a hooked \# 4 bar, the basic development length Ihb with modification factors is:
ldh= 11.20 in .

Therefore, the benefit derived from the hook is
11.80 in
The bar is hooked with a vertical embedment: 7 in Then the development fraction is:

Development length factor $=\quad 0.82$

Area of steel per design strip	$\mathrm{A}_{S}=$ Bar Area * b / Stirrup spacing $=$	0.20	in. ${ }^{2} / \mathrm{ft}$.
Effective depth of section	$\mathrm{d}_{\mathrm{s}}=\mathrm{d}-\mathrm{c}-1 / 2$ Stirrup Dia. $=$	16.25	in.
Depth of equivalent stress block	$a=\frac{A_{S} f_{y}}{0.85 f_{c}^{\prime} b}=$	0.32	in.
Flexural moment resistance	$M_{c}=\varphi_{E E} A_{S} f_{y}\left(d_{S}-\frac{a}{2}\right)=$	19.73	kip-ft./ft.
Critical length of yield line failure	tern $L_{C}=\frac{L_{t}}{2}+\sqrt{\left(\frac{L_{t}}{2}\right)^{2}+\frac{8 H_{W}\left(M_{b}+M_{W}\right)}{M_{C}}}=$	7.38	ft .

There is no additional resistance at the top of the parapet in addition to $\mathrm{M}_{\mathrm{w}}, \quad \mathrm{M}_{\mathrm{b}}=0$ kip-ft.
3. Determine R_{W} (nominal railing resistance to transverse load) within a wall segment.

$$
R_{W}=\left(\frac{2}{2 L_{C}-L_{t}}\right)\left(8 M_{b}+8 M_{W}+\frac{M_{C} L_{C}^{2}}{H_{W}}\right)=
$$

259.97 kip

AASHTO A13.3.1-1
4. Calculate maximum post capacity P_{P}.
a. Plastic moment capacity of the post

Yielding of post	$M_{\text {post }}=$	62.08 kip- ft
CG of impact force above curb	$H_{R}-H_{w}$	19.06 in
Maximum shear force at base of the post, P_{p} to cause post failure		
$M_{\text {post }} /\left(H_{R}-H_{w}\right)$	$P_{p 1}=$	39.08 kip
b. Weld connection strength		
Thickness of the weld	$t_{\text {weld }}=$	0.313 in
Effective thickness $0.77^{*} t_{\text {weld }}$	$t_{\text {weff }}=$	0.22 in

Calculate fillet weld strength as a line (Design of Welded Structures by Blodgett)

$\quad S_{W}=\left(2 * \mathrm{~b}^{*} \mathrm{~d}+\frac{d_{\text {mim }}^{2}}{3}\right) * \mathrm{t}_{\text {weff }}$	$\mathrm{S}_{\mathrm{w}}=$	$19.32 \mathrm{in}^{3}$	
Strength of the weld	$\mathrm{F}_{\mathrm{Exx}}=$	70.00 ksi	
Maximum weld moment	$\mathrm{M}_{\mathrm{weld}}=$	$67.63 \mathrm{kip-ft}$	$\left(0.6 * \mathrm{~F}_{\mathrm{Exx}}{ }^{*} \mathrm{~S}_{\mathrm{w}}\right)$
Maximum shear force at base	$\mathrm{P}_{\mathrm{p} 2}=$	42.58 kip	

c. Bolt shear strength

| Shear resistance |
| :--- | :--- | :--- |
| $R_{\mathrm{n}} \quad=0.45 *\left(\mathrm{pi}^{*} 7 / 8 \mathrm{in} \wedge 2\right) / 4 * 120.0 \mathrm{ksi} * 2$ |$\quad R_{n}=0.45 A_{b} F_{u b} N_{\mathrm{P}_{\mathrm{p} 3}}=64.94 \quad \mathrm{kip}$

AASHTO 6.13.2.7-2
d. Concrete breakout shear strength
Spacing of bolts $\quad \mathrm{b}_{\text {spa }}=\mathbf{9 . 0 0}$ in

Since the spacing of the anchors is less than 3 times the bolt distance d_{b}, the bolts must be treated as a group
Area resisting breakout $\mathrm{A}_{\mathrm{vc}}=\quad 585 \mathrm{in}^{2} \quad(9.0 \mathrm{in}+3 * 10.0 \mathrm{in}) * 1.5 * 10.0$ in
Maximum area $=\quad \mathrm{n}_{\mathrm{b}} * 4.5 \mathrm{~d}_{\mathrm{bo}}{ }^{2} \quad 900 \mathrm{in}^{2} \quad \mathrm{~A}_{\mathrm{vco}}=0450 \mathrm{in}^{2}$

$$
V_{c b}=\frac{A_{V c}}{A_{V c o}} \psi_{e c, V} \psi_{e d, V} \psi_{c, V} \psi_{h, V} V_{b}
$$

There is no eccentricity in shear loading and so modification factor for eccentricity $\psi_{e c, V}=1.0$
ACI 318 17.7.2.3
Edge distances (along the curb) > 1.5 x bolt distance and so modification factor for edge distance $\psi_{\text {ed,V }}=1.0 \mathrm{ACI} 318$ 17.7.2.4 Analysis indicates no cracking at service loads and so modification factor for concrete $\psi_{c, v}=1.4$

$$
\text { Anchor embedment } h_{\text {ef }}=
$$

$$
10.75 \text { in }
$$

$$
1.5 * d_{b o}=\quad 15.00 \text { in }
$$

$$
\psi_{h, V}=\sqrt{\frac{1.5 d_{b}}{h}} \quad 1.181
$$

Basic shear strength is minimum of
$V_{b 1}=\left(7\left(\frac{l_{e}}{\varphi}\right)^{0.2} \sqrt{\varphi}\right) \lambda_{a} \sqrt{f_{c}^{\prime}}\left(d_{b o}\right)^{1.5} \quad V_{b 2}=9 \lambda_{a} \sqrt{f_{c}^{\prime}}\left(d_{b o}\right)^{1.5}$

Bolt tensile strength	$\mathrm{f}_{\mathrm{uta}}=$	120.0	ksi	Bolt
	$\phi=$	0.75		Num
	$\mathrm{A}_{\mathrm{se}}=$	0.486	in^{2}	
	$\mathrm{~N}_{\mathrm{sa}}=$	43.75	kip	
Tensile strength of 2 bolts $=$	$\mathrm{N}_{\mathrm{s}}=$	87.50	kip	

Equating tension and compression, depth of compression c $=\mathrm{N}_{s} /\left(0.85\right.$ * $\mathrm{f}^{\prime} \mathrm{c}$ * $\left.\mathrm{W}_{\mathrm{b}}\right)$				$\mathrm{c}=$	1.91
Moment lever a	- c/2				
Moment capacity based on bolt tensile cap	$\mathrm{M}_{\text {bolt }}=$	44.0	kip-ft		
$M_{\text {bolt }} /\left(H_{R}-\mathrm{H}_{\mathrm{w}}\right)$	$\mathrm{P}_{\mathrm{p} 5}=$	27.7			
Minimum strength of post in shear	P_{P}	27.76			

4. Calculate collision tensile force in deck T and collision moment $M_{C T}$.

The resistance of each component of a combination bridge rail shall be determined as specified in Article A13.3.1 and A13.3.2 of the AASHTO code. The flexural strength of the rail shall be determined over one and two spans. The resistance of the combination parapet and rail shall be taken as the lesser of the resistances determined for the two failure modes. Impact at Midspan (3 spans) (Other odd spans didn't control and so not included)

Number of spans	$\mathrm{N}=$	3	
Yielding of all rails	$\mathrm{M}_{\mathrm{p}}=$	93.33	$\mathrm{kip}-\mathrm{ft}$
Impact force distribution	$\mathrm{L}_{\mathrm{t}}=$	5.00	ft
post spacing	$\mathrm{L}=$	10.00	ft

AASHTO A13.3.2-1

$$
\begin{array}{ll}
R_{R}=\frac{16 M_{p}+(N-1)(N+1) P_{p} L}{2 N L-L_{t}}=(16 * 93.33 \mathrm{kip}-\mathrm{ft}+0) /(2 * 3 \mathrm{ft} * 10.00 \mathrm{ft}-5.00 \mathrm{ft}) \\
\mathrm{R}_{\mathrm{R}}= & 67.53 \mathrm{kip} \\
\bar{R}=R_{R}+R_{w} \quad=(67.53 \mathrm{kip}+259.97 \mathrm{kip})= & 327.50036 \mathrm{kip}
\end{array}
$$

AASHTO A13.3.3-1
Designing deck overhang for strength > strength of rails and curb is conservative. Therefore, design only for maximum MASH F_{t} loads. Assume the rails fail during impact and curb resists the remaining load.

SUMMARY

Impact at post controls the design as the transfer width is narrower than the impact between posts Use the following data for Deck overhang design at the front face of the curb (Test Level 4):

Controlling Axial Load Per Unit Length of the Deck	$\mathrm{T}_{\text {Axial }}=$	$7.26 \mathrm{kip} / \mathrm{ft}$.
Deck Overhang Moment	$\mathrm{M}_{\mathrm{ct}}=$	$19.66 \mathrm{kip} \mathrm{ft} . / \mathrm{ft}$.

EXAMPLE 6.3 - BARRIER TYPE 9 STRENGTH DESIGN

GENERAL INFORMATION

The CDOT Bridge Rail Type 9 design follows the AASHTO LRFD Bridge Design Specifications A13.3.1 design procedure for concrete railings, using strength design for reinforced concrete. The following calculations show case of impact within barrier segment, assuming that barrier will be extended past the limits of the bridge. For cases concerning impact at end of the barrier, refer to AASHTO Appendix A13. The applied design force (F_{t}) and the longitudinal length of distribution of the impact force $\left(L_{t}\right)$ in this example is from the research conducted under NCHRP Project 22-20(2). The TL-4 maximum capacity of Type 9 is shown for overhang example.

Overall barrier height	$\mathrm{H}_{\mathrm{B}}=$	$\mathbf{4 3 . 0 0}$	in.	
Concrete strength	$\mathrm{f}_{\mathrm{c}}=$	$\mathbf{4 . 5 0}$	ksi	
Reinforcement strength	$\mathrm{f}_{\mathrm{y}}=$	$\mathbf{7 5 . 0 0}$	ksi	
Concrete cover	$\mathrm{c}=$	$\mathbf{1 . 5 0}$	in.	AASHTO 1.3.2.1
Resistance factor	$\varphi=$	$\mathbf{1 . 0 0}$	(Extreme Event)	AASHTO T A13.2-1
Test level		TL-4		
Transverse design force	$\mathrm{F}_{\mathrm{t}}=$	$\mathbf{8 0 . 0 0}$	kips	
Impact force distribution	$\mathrm{L}_{\mathrm{t}}=$	$\mathbf{5 . 0 0}$	ft.	

BARRIER FLEXURAL CAPACITY

1. Determine M_{C} : flexural resistance of cantilevered parapet about an axis parallel to the longitudinal axis of the bridge at midspan.

Barrier Dimensions	Sec. 1	Sec. 2	Sec. 3	Sec. 4
Section top width	11.125	8.00	8.00	17.63
Section bottom width	12.56	8.00	17.63	18.00
Section height	9.00	19.00	13.00	2.00
A_{S} - area of steel per design strip h - section height				
$\mathrm{d}_{\text {avg }}$ - average section width				
d_{s} - effective depth of design section				
$\mathrm{b}_{\mathrm{c}} \quad$ - width of design strip (taken as 1 ft per AASHTO Section 13) a - depth of equivalent stress block				
$\varphi M_{n}=\varphi A_{S} f_{y}\left(d^{\prime}\right.$		$C=\sum$	M_{n} / b	

==12
$\begin{array}{llll}1 \text { st vertical rebar (Bar A) } & \# 4 \text { @ } 9 \mathrm{in.} & \text { Bar Diameter }= & 0.500 \mathrm{in} .\end{array}$
Bar Area $=\quad 0.20$ in. 2

	$\begin{gathered} \mathrm{A}_{\mathrm{S}} \\ \left(\mathrm{in.}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{h} \\ \text { (in.) } \end{gathered}$	$\begin{aligned} & \mathrm{d}_{\mathrm{avg}} \\ & \text { (in.) } \end{aligned}$	$\begin{gathered} \mathrm{d}_{\mathrm{s}} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \hline b_{c} \\ \text { (in.) } \end{gathered}$	$\mathrm{k}=.85 \mathrm{f}_{\mathrm{c}} \mathrm{b}$	$\begin{gathered} \hline \mathrm{a}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} / \mathrm{k} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \varphi \mathrm{M}_{\mathrm{n}} \\ \text { (kip-ft.) } \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{C}} \\ \text { (kip-ft./ft.) } \end{gathered}$
Section 1	0.27	9.00	11.84	10.09	12.00	45.90	0.44	16.46	3.45
Section 2	0.27	19.00	8.00	6.25	12.00	45.90	0.44	10.05	4.44
Section 3	0.27	13.00	12.81	11.06	12.00	45.90	0.44	18.07	5.46
Section 4	0.27	2.00	17.81	16.06	12.00	45.90	0.44	26.41	1.23
							Barrier $\mathrm{M}_{\mathrm{C}}(\operatorname{Bar} A)=$		14.58

2nd vertical rebar (Bar B)

\section*{| \# 4 @ 18 in. |
| :--- | :--- | :--- |}

	$\begin{gathered} \mathrm{A}_{\mathrm{S}} \\ \left(\text { in. }^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{h} \\ \text { (in.) } \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{d}_{\mathrm{avg}} \\ & \text { (in.) } \end{aligned}$	$\begin{gathered} d_{\mathrm{s}} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \mathrm{b}_{\mathrm{c}} \\ \text { (in.) } \end{gathered}$	$\mathrm{k}=.85 \mathrm{f}^{\prime} \mathrm{c}^{\mathrm{b}}$	$\begin{gathered} \hline \mathrm{a}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} / \mathrm{k} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \varphi \mathrm{M}_{\mathrm{n}} \\ \text { (kip-ft.) } \end{gathered}$	$\begin{gathered} \hline \mathrm{M}_{\mathrm{C}} \\ \text { (kip-ft./ft.) } \end{gathered}$
Section 1	0.13	9.00	11.84	5.59	12.00	45.90	0.22	4.57	0.96
Section 2	0.00	19.00	8.00	1.75	12.00	45.90	0.00	0.00	0.00
Section 3	0.13	13.00	12.81	6.56	12.00	45.90	0.22	5.38	1.63
Section 4	0.13	2.00	17.81	11.56	12.00	45.90	0.22	9.54	0.44
							Barrier M ${ }_{\mathrm{C}}$ (Bar B) $=$		3.03

3rd vertical rebar (Bar C) \quad \# 4 @ 12 in.

	$\begin{gathered} \mathrm{A}_{\mathrm{S}} \\ \left(\mathrm{in}^{2}{ }^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{h} \\ \text { (in.) } \end{gathered}$	$\begin{aligned} & \mathrm{d}_{\mathrm{avg}} \\ & \text { (in.) } \end{aligned}$	$\begin{gathered} \mathrm{d}_{\mathrm{s}} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \hline \mathrm{b}_{\mathrm{c}} \\ \text { (in.) } \end{gathered}$	$\mathrm{k}=.85 \mathrm{f}^{\prime} \mathrm{c}^{\text {b }}$	$\begin{gathered} \mathrm{a}=\mathrm{A}_{\mathrm{sf}} \mathrm{f}_{\mathrm{y}} / \mathrm{k} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \varphi \mathrm{M}_{\mathrm{n}} \\ \text { (kip-ft.) } \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{C}} \\ \text { (kip-ft./ft.) } \end{gathered}$
Section 1	0.00	9.00	11.84	10.09	12.00	45.90	0.00	0.00	0.00
Section 2	0.00	19.00	8.00	6.25	12.00	45.90	0.00	0.00	0.00
Section 3	0.20	13.00	12.81	11.06	12.00	45.90	0.33	13.62	4.12
Section 4	0.20	2.00	17.81	16.06	12.00	45.90	0.33	19.87	0.92
							Barrier M_{C} (Bar C) $=$		5.04

Grand Total Barrier $\mathrm{M}_{\mathrm{C}}=22.65$
2. Determine M_{W} : flexural resistance of the parapet about its vertical axis.

Back face horizontal reinforcement				\# 4	Bar Diameter = Bar Area =			$\begin{aligned} & 0.50 \\ & 0.20 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & \text { in }^{2} \end{aligned}$
	No. of Bars	$\begin{gathered} \mathrm{A}_{\mathrm{S}} \\ \left(\text { in. }{ }^{2}\right) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{h} \\ \text { (in.) } \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{d}_{\mathrm{avg}} \\ & \text { (in.) } \end{aligned}$	$\begin{gathered} \mathrm{d}_{\mathrm{s}} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \text { (in.) } \end{gathered}$	$\mathrm{k}=.85 \mathrm{f}_{\mathrm{c}} \mathrm{h}$	$\begin{gathered} \hline \mathrm{a}=\mathrm{A}_{\mathrm{sf}_{\mathrm{y}} / \mathrm{k}} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \varphi \mathrm{M}_{\mathrm{w}} \\ \text { (kip-ft.) } \end{gathered}$
Section 1	2	0.40	9.00	11.84	9.59	9.00	34.43	0.87	22.90
Section 2	1	0.20	19.00	8.00	5.75	19.00	72.68	0.21	7.06
Section 3		0.20	13.00	9.63	7.38	13.00	49.73	0.30	9.03
Section 4	0	0.00	2.00	17.81	15.56	2.00	7.65	0.00	0.00
Barrier $\mathrm{M}_{\mathrm{W}}=$									38.98

3. Rail resistance within a wall segment.

$$
\begin{aligned}
R_{W} & =\left(\frac{2}{2 L_{C}-L_{t}}\right)\left(8 M_{b}+8 M_{W}+\frac{M_{C} L_{C}^{2}}{H}\right) \\
L_{C} & =\frac{L_{t}}{2}+\sqrt{\left(\frac{L_{t}}{2}\right)^{2}+\frac{8 H\left(M_{b}+M_{W}\right)}{M_{C}}}
\end{aligned}
$$

AASHTO A13.3.1-1

AASHTO A13.3.1-2

Additional flexural resistance at top of wall	$M_{b}=$	0.00	kip-ft.
Critical length of yield line	$L_{C}=$	9.96	ft.
Nominal transverse load resistance	$R_{W}=125.86$	kips	

Capacity Check Check $R_{W}>F_{t}: 125.86>80.00$ OK

BARRIER INTERFACE SHEAR CAPACITY

AASHTO 5.7.4
Evaluate the shear capacity of the cold joint to transfer nominal resistance R_{W} between the deck and railing. Neglect effects of barrier Dead Load and assume that the surface of the deck is not roughened.

Interface width considered in shear transfer
Interface length considered in shear transfer

Shear contact area

Shear reinforcement at front face
Area of shear reinforcement
$\mathrm{b}_{\mathrm{V}}=18.00$ in.
$L_{V}=12.00$ in.

Bar Area : 0.2 in. ${ }^{2}$

Check $\quad A_{v f} \geq \frac{0.05 A_{c v}}{f_{y}}=0.144 \quad$ OK
AASHTO 5.7.4.2-1

Permanent compression force from barrier weight (neglected)
$\mathrm{Pc}=$
0.00 kip

For concrete placed against clean concrete surface, free of laitance, but not intentionally roughened

OVERHANG DESIGN DATA
Barrier Type 9 satisfies all checks outlined in AASHTO LRFD Bridge Design Specifications Appendix 13. Use the following data for Deck overhang design at the front face of the curb when Barrier Type 9 is used (Test Level 4):
$\mathrm{T}_{\text {Axial }}=\mathrm{R}_{\mathrm{W}} /\left(\mathrm{L}_{\mathrm{C}}+2 \mathrm{H}_{\mathrm{B}}\right)$
AASHTO A13.4.2-1

Axial Load Per Unit Length of the Deck	$\mathrm{T}_{\text {Axial }}=$	7.35	kip/ft.
Moment Capacity of the Barrier	$\mathrm{M}_{\mathrm{c}}=$	22.65	kip -ft./ft.

EXAMPLE 6.4 - OVERHANG DESIGN

GENERAL INFORMATION

Bridge deck overhang shall be designed for three separate design cases:
AASHTO A13.4.1

- Case 1 - Horizontal and longitudinal forces from vehicle collision load (Extreme Event II limit state)
- Case 2 - Vertical force from vehicle collision load (Extreme Event II limit state)
- Case 3 - Vertical Dead and Live Load at the overhang section (Strength I limit state)

The deck overhang region shall be designed to have resistance larger than the MASH impact forces. Therefore, analysis of MASH barriers must be done. Refer to Example 6.2 for detailed strength calculations for Barrier Type 10 MASH.

Barrier type
Width of barrier base
Barrier weight
Deck overlay density
Concrete density
Barrier center of gravity
Axial load per unit length
Deck Overhang Moment
Critical length of yield line
Overhang width
Edge of deck to edge of flange
Overhang minimum depth
Overhang maximum depth
Concrete top cover

Type 10MASH		
$\mathrm{W}_{\mathrm{B}}=$	18.0	in.
$\mathrm{W}_{\text {Barrier }}=$	0.289	$\mathrm{kip} / \mathrm{ft}$. (see Deck Design)
W^{2}	0.447	kcf

$W_{\text {Ws }}=0.147 \quad \mathrm{kcf}$
Section 3.4.2

Concrete strength
Reinforcement strength
Test Level
$W_{C}=0.15$ kcf
$X_{\text {C.G. }}=12.63$ in.
$\mathrm{T}_{\text {Axial }}=7.26 \mathrm{kip} / \mathrm{ft}$. (refer to Type 10MASH Strength Design)
$M_{C}=19.66$ kip-ft./ft. (refer to Type 10MASH Strength Design)
$\mathrm{L}_{\mathrm{C}}=7.38 \mathrm{ft}$. (refer to Type 10MASH Strength Design)

L_{C}	7.38	t. (refer to Type 10MASH Strength Design)
$\mathrm{S}_{\mathrm{OH}}=$	5.00	ft .
$\mathrm{S}_{\text {Gdr_Edge }}=$	3.00	ft .
$\mathrm{t}_{\mathrm{OH}(\text { min })}=$	8.00	in.
$\mathrm{t}_{\mathrm{OH}(\text { max })}=$	10.00	in. (at exterior edge of flange)
$\mathrm{c}_{\text {Top }}=$	2.00	in. AASHTO T.5.10.1-1
$\mathrm{f}_{\mathrm{c}}=$	4.5	ksi

Transverse design force
Impact force distribution
Vertical Design Force
Longitudinal distribution of Vertical force

$\mathrm{f}_{\mathrm{y}}=$	60	ksi
	$\mathrm{TL-4}$	
$\mathrm{~F}_{\mathrm{t}}=$	80	kips
$\mathrm{L}_{\mathrm{t}}=$	5	ft
$\mathrm{F}_{\mathrm{V}}=$	22	kips
$\mathrm{L}_{\mathrm{V}}=$	18	ft

Controlling Load Combinations	Load Factors			
	Y_{DC}	YDW_max	Y_{CT}	Y_{LL}
Extreme Event II	1.00	1.00	1.00	0.50
Strength I	1.25	1.50	0.00	1.75

AASHTO T3.4.1-1

The deck overhang is designed to resist an axial tension force and moment from vehicular collision (CT) acting simultaneously with the Dead Load (DC/DW) and Live Load (LL) moment. The critical section shall be taken at the face of the box girder (AASHTO 4.6.2.1.6). In addition, Extreme Event II combination is also checked at the face of the curb. Loads are be assumed to be distributed at a 45 degree angle starting from the base plate.

DESIGN CASE 1: Extreme Event II (Transverse Collision) at the face of the curb

Distance from edge of deck to design section	$\mathrm{K}=$	1.50	ft.
Distance from barrier face to design section	$\mathrm{X}=$	0.00	ft.
Depth of the section under consideration	$\mathrm{h}_{\text {Design }}=$	9.00	in. (may add min haunch depth if needed,
			conservative to use constant deck depth)

Bending moments from dead load of structural components and nonstructural attachments:

Barrier	$\mathrm{M}_{\text {DC-Barier }}=\mathrm{W}_{\text {Barrier }}{ }^{*}\left(\mathrm{~K}-\mathrm{X}_{\text {C.G. }}\right)=$	$0.289 \mathrm{kip} / \mathrm{ft}$. * (1.50 ft. - $12.63 \mathrm{in} . / 12 \mathrm{in} . / \mathrm{ft}$. $)=$	$0.129 \mathrm{kip-ft}$./ft.
Deck	$\mathrm{M}_{\mathrm{DC}-\text { Deck }}=\mathrm{W}_{\mathrm{C}} * \mathrm{t}_{\mathrm{OH}(\text { min })} * \mathrm{~K}^{2} / 2=$	$0.150 \mathrm{kcf} * 8 \mathrm{in} . / 12 \mathrm{in} . / \mathrm{ft}.{ }^{*}(1.50 \mathrm{ft})^{2} / 2=$	0.113 kip-ft./ft.
Additional overhang concrete $\quad \mathrm{M}_{\mathrm{DC} \text {-Add }}=0.5 \mathrm{~W}_{\mathrm{C}}{ }^{*} \mathrm{~S}_{\mathrm{Gdr} \text { _Edge }}\left(\mathrm{T}_{\mathrm{OH}(\text { max })}-\mathrm{T}_{\mathrm{OH}(\text { min })}\right) *\left(\mathrm{~K}-2 / 3 \mathrm{~S}_{\mathrm{Gdr} \text { _dge }}\right)=$ $=0.5$ * $0.150 \mathrm{kcf} * 1.50 \mathrm{ft}$. $(10.0 \mathrm{in} .-8.0 \mathrm{in}$. $) / 12 \mathrm{in} . / \mathrm{ft}$. * $(1.50 \mathrm{ft} .-2 / 3 * 1.50 \mathrm{ft}$. $)=$			0.009 kip -ft./ft.
Total DC	$M_{\text {DC-Barier }}+\mathrm{M}_{\text {DC-Deck }}+\mathrm{M}_{\text {DC-Add }}=$	0.13 kip-ft.+0.11 kip-ft.+0.009 kip-ft. $=$	0.251 kip-ft./ft.
CDOT Bridge Design Manual			

Development length of transverse reinforcement should be considered. It can be dealt with in a variety of methods

Bending moments from wearing surfaces and utilities:
Deck overlay $\quad \mathrm{M}_{\mathrm{DW}-\mathrm{ws}}=\mathrm{W}_{\mathrm{ws}}{ }^{*} 3 \mathrm{in} .{ }^{*} \mathrm{X}^{2} / 2=0.147 \mathrm{kcf} * 3 \mathrm{in} . / 12 \mathrm{in} . / \mathrm{ft} . *(0.00 \mathrm{ft}) / 2=.0.000 \mathrm{kip}$-ft./ft.
Both design bending moment and design axial tension are calculated based on the properties of the barrier on the deck. See Type 10MASH tab for information on strength design.

Bending moment from vehicular collision $\quad \mathrm{M}_{\mathrm{CT}}=\mathrm{M}_{\mathrm{C}}=\quad 19.66 \mathrm{kip}$-ft./ft.
Design factored moment (Extreme Event II, Case I)
AASHTO 3.4.1, A13.4.1
$\mathrm{Mu}_{1}=1.0 \mathrm{M}_{\mathrm{DC}}+1.0 \mathrm{M}_{\mathrm{DW}}+1.0 \mathrm{M}_{\mathrm{CT}}=0.251$ kip-ft. +0.000 kip-ft. $+19.66 \mathrm{kip}-\mathrm{ft} .=$
19.92 kip-ft./ft.

DESIGN CASE 2: Extreme Event II (Vertical Collision) at the face of the curb
Vertical and Longitudinal collision cases will not control generally and so other critical sections are not included.

Dead Load moment

$$
\mathrm{M}_{\mathrm{DC}}=\quad 0.25 \mathrm{kip}-\mathrm{ft} . / \mathrm{ft} .
$$

Design factored moment (Extreme Event II, Case I)
AASHTO 3.4.1, A13.4.1

$$
\mathrm{Mu}_{2}=1.0 \mathrm{M}_{\mathrm{DC}}+1.0 \mathrm{M}_{\mathrm{CT}}=\quad 0.547 \mathrm{kip}-\mathrm{ft} . / \mathrm{ft} .+0.251 \mathrm{kip}-\mathrm{ft} . / \mathrm{ft} .=0.798 \mathrm{kip}-\mathrm{ft} . / \mathrm{ft} .
$$

DESIGN CASE 3: STRENGTH I (At the face of the girder)

The overhang is designed to resist gravity forces from the Dead Load of structural components and attachments to the cantilever, as well as a concentrated Live Load positioned 12.00 in. from the face of the barrier.

For decks with overhangs not exceeding 6.00 ft . measured from the centerline of the exterior girder to the face of a structurally continuous concrete railing, the outside row of wheel loads may be replaced with a uniformly distributed line load of 1.0 klf intensity per AASHTO LRFD Bridge Design Specifications 3.6.1.3.4.

==			
Distance from edge of deck to design section	$\mathrm{K}=$	3	ft.
Distance from barrier face to design section	X $=$	1.5	ft.
Depth of the section under consideration	$\mathrm{h}_{\text {Design }}=$	10.00	in.
Distance from LL application to design section	$\mathrm{z}=$	0.5	ft.
Live Load multiple presence factor	$\mathrm{m}=$	1.00	
Dynamic load allowance	$\mathrm{IM}=$	0.33	

AASHTO T.3.6.1.1.2-1
AASHTO 3.6.2

Bending moment from Dead Loads (equal to the loads calculated for Design Case 1)

Barrier	$\mathrm{M}_{\mathrm{DC} \text {-Barrier }}=$	0.562	$\mathrm{kip}-\mathrm{ft} . / \mathrm{ft}$.
Deck	$\mathrm{M}_{\mathrm{DC} \text {-Deck }}=$	0.45	$\mathrm{kip}-\mathrm{ft} . \mathrm{ft}$.
Add. overhang concrete	$\mathrm{M}_{\mathrm{DC} \text {-Add }}=$	0.038	$\mathrm{kip}-\mathrm{ft} / \mathrm{ft}$.
Deck overlay	$\mathrm{M}_{\mathrm{DW}-\mathrm{ws}}=$	0.041	$\mathrm{kip}-\mathrm{ft} . / \mathrm{ft}$.

AASHTO 3.6.1.3.4

| Bending moment from live load $\quad \mathrm{M}_{\mathrm{LL}}=$ | $1.0 \mathrm{klf} * 0.50 \mathrm{ft}=$ |
| :--- | :--- |$\quad 0.5 \quad \mathrm{kip}$-ft./ft..

$=1.25$ * 1.05 kip-ft./ft $+1.50 * 0.041 \mathrm{kip}-\mathrm{ft} . / \mathrm{ft}+1.75 * 1.00 * 1.33 * 0.50 \mathrm{kip}-\mathrm{ft} . / \mathrm{ft}=$
2.54 kip-ft./ft.

Design Summary	(By observation, other load cases will not control and are not included in this example)			
Design Case 1	$\mathrm{M}_{\mathrm{u} 1}=$	19.916	kip-ft./ft.	
Design Case 2	$\mathrm{M}_{\mathrm{u} 2}=$	0.798	kip-ft./ft.	
Design Case 3	$\mathrm{M}_{\mathrm{u} 3}=$	2.538	kip-ft./ft.	
Controlling Case =	Mu1 =	19.916	kip-ft./ft.	DESIGN CASE 1 CONTROLS

Design axial tensile load $\quad \mathrm{T}_{\text {Axial }}=\quad 7.26 \mathrm{kip} / \mathrm{ft}$.

Top transverse reinforcement:	Bar size Bar spacing s=	$\begin{gathered} \# 5 \\ 5 \end{gathered}$		(see Deck Design)	
Bottom transverse reinforcement:	Bar size Bar spacing $\mathrm{s}=$	$\begin{gathered} \# 5 \\ 6 \end{gathered}$		(see Deck Design)	
Area of top steel per design strip	$A_{s t}=\mathrm{b}\left(\mathrm{A}_{\mathrm{b}} / \mathrm{s}\right)=$	12 in . *	in. / 5.0 in. =	0.744	in. ${ }^{2} / \mathrm{ft}$.
Area of bottom steel per design strip $A_{s b}=b\left(A_{b} / s\right)=$		12 in . *	in. / 5.0 in. =	0.62	in. ${ }^{2} / \mathrm{ft}$.
Steel in each layer resisting tension $\mathrm{A}_{\text {ten }}=\mathrm{T}_{\text {axial }}{ }^{*} 0.5 / \mathrm{F}_{\mathrm{y}}=$		7.26 kip	0.5 / $60.0 \mathrm{ksi}=$	0.061	in. $/ / \mathrm{ft}$.
Area of top steel per design strip resisting moment		$\mathrm{A}_{\text {st }}-\mathrm{A}_{\text {ten }}$			
		0.74 sq.	- 0.06 sq. in. $=$	0.683	in. ${ }^{2} / \mathrm{ft}$.
Effective depth of section		$\mathrm{d}_{\mathrm{S}}=\mathrm{h}_{\text {Design }}-\mathrm{c}_{\text {Top }}-1 / 2 \mathrm{~d}_{\mathrm{b}}=$			
		9 in . - 2	-0.625 in. $/ 2=$	6.688	in.

Depth of equivalent stress block

$$
a=\frac{A s * f y}{0.85 f_{c}^{\prime} b}=0.68 \text { sq. in. } * 60.00 \mathrm{ksi} /(0.85 * 4.50 \mathrm{ksi} * 12 \mathrm{in} .)=\quad 0.893 \quad \mathrm{in} .
$$

Factored flexural resistance

$$
\begin{aligned}
& \varphi_{E E} M_{n}=\varphi_{E E}\left[A s * f y\left(d-\frac{a}{2}\right)\right]= \\
& 1.0 * 0.68 \text { sq. in. * } 60.00 \mathrm{ksi}^{*}(6.69 \mathrm{in} .-0.89 \mathrm{in} / 2)= \\
& 21.328 \quad>\quad 19.916 \quad 21.328 \quad \text { kip-ft./ft. }
\end{aligned}
$$

BARRIER TYPE 10MASH CENTER OF GRAVITY (Steel Only)

Description	Unit wt lb/ft	Distance from deck out (in.)	Length (ft)	Number	Weight lb	$\mathrm{W} \times \mathrm{lb}$-in.
Tubes $6 \times 6 \times 1 / 4$	19.02	13.50	10.00	2	380.40	5135.40
Post W6 $\times 20$	20.00	7.4	2.339	1	46.78	346.17
Base PI $10.5 \times 12 \times 3 / 4$	26.80	8.25	0.75	1	20.10	165.81
				Total	$\mathbf{4 4 7 . 2 8}$	$\mathbf{5 6 4 7 . 3 8}$

